QUIZ 6 SOLUTIONS: LESSON 7 SEPTEMBER 12, 2018

Write legibly, clearly indicate the question you are answering, and put a box or circle around your final answer. If you do not clearly indicate the question numbers, I will take off points. Write as much work as you need to demonstrate to me that you understand the concepts involved. If you have any questions, raise your hand and I will come over to you.

1. [10 pts] When an object is removed from a furnace and placed in a room with a constant temperature of $75^{\circ} \mathrm{F}$, its temperature is $1000^{\circ} \mathrm{F}$. One hour after it is removed, the temperature of the object is $500^{\circ} \mathrm{F}$. Find the temperature of the object after 3 hours. Round your answer to the nearest degree.

Solution: Newton's Law of Cooling is

$$
\frac{d T}{d t}=k(T-S)
$$

where T is the temperature of the object, t is time, and S is the ambient temperature (of the room in this case). Hence, our differential equation is

$$
\frac{d T}{d t}=k(T-75)
$$

We find the general solution to this equation.
We separate our variables and integrate:

$$
\begin{aligned}
\frac{d T}{d t} & =k(T-75) \\
\Rightarrow \quad \frac{1}{T-75} d T & =k d t \\
\Rightarrow \quad \int \frac{1}{T-75} d T & =\int k d t \\
\Rightarrow \quad \ln (T-75) & =k t+C \\
\Rightarrow \quad T-75 & =e^{k t+C}=C e^{k t} \\
\Rightarrow \quad T & =C e^{k t}+75
\end{aligned}
$$

Now, since we know

$$
T=C e^{k t}+75
$$

we use $T(0)=1000$ and $T(1)=500$ to solve for C and k. Write

$$
\begin{aligned}
\underbrace{1000}_{T(0)} & =C e^{k \cdot 0}+75 \\
\Rightarrow \quad 925 & =C \underbrace{e^{0}}_{1}
\end{aligned}
$$

Hence,

$$
T=925 e^{k t}+75
$$

Next,

$$
\begin{aligned}
\underbrace{500}_{T(1)} & =925 e^{k \cdot 1}+75 \\
\Rightarrow \quad 425 & =925 e^{k} \\
\Rightarrow \quad \frac{425}{925} & =e^{k} \\
\Rightarrow \quad \frac{17}{37} & =e^{k} \\
\Rightarrow \quad \ln \left(\frac{17}{37}\right) & =k
\end{aligned}
$$

Therefore,

$$
T=925 e^{\ln (17 / 37) t}+75
$$

Finally, we compute $T(3)$,

$$
T(3)=925 e^{\ln (17 / 37) \cdot 3}+75 \approx 165^{\circ} \mathrm{F} .
$$

